A Dirty Model for Multiple Sparse Regression
نویسندگان
چکیده
منابع مشابه
Multiple Fuzzy Regression Model for Fuzzy Input-Output Data
A novel approach to the problem of regression modeling for fuzzy input-output data is introduced.In order to estimate the parameters of the model, a distance on the space of interval-valued quantities is employed.By minimizing the sum of squared errors, a class of regression models is derived based on the interval-valued data obtained from the $alpha$-level sets of fuzzy input-output data.Then,...
متن کاملA New Greedy Algorithm for Multiple Sparse Regression
This paper proposes a new algorithm for multiple sparse regression in high dimensions, where thetask is to estimate the support and values of several (typically related) sparse vectors from a few noisylinear measurements. Our algorithm is a “forward-backward” greedy procedure that – uniquely – operateson two distinct classes of objects. In particular, we organize our target spar...
متن کاملA Sparse Spatial Linear Regression Model for fMRI Data Analysis
In this study we present an advanced Bayesian framework for the analysis of functional Magnetic Resonance Imaging (fMRI) data that simultaneously employs both spatial and sparse properties. The basic building block of our method is the general linear model (GML) that constitute a well-known probabilistic approach for regression. By treating regression coefficients as random variables, we can ap...
متن کاملA Sparse Regression Mixture Model for Clustering Time-Series
In this study we present a new sparse polynomial regression mixture model for fitting time series. The contribution of this work is the introduction of a smoothing prior over component regression coefficients through a Bayesian framework. This is done by using an appropriate Student-t distribution. The advantages of the sparsity-favouring prior is to make model more robust, less independent on ...
متن کاملConditional Sparse Coding and Multiple Regression for Grouped Data
We study the problem of multivariate regression where the data are naturally grouped, and a regression matrix is to be estimated for each group. We propose an approach in which a dictionary of low rank parameter matrices is estimated across groups, and a sparse linear combination of the dictionary elements is estimated to form a model within each group. We refer to the method as conditional spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2013
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2013.2280272